Questions on Motion - Mark Scheme

1. Correct lines from:

- joule (J) to N m
- \quad watt (W) to $\mathrm{J} \mathrm{s}^{-1}$
- newton (N) to $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$

Note: 2 marks for all correct
1 mark for two correct
0 marks for none or one correct
2. (a)
(i) $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$ C1

$$
\begin{equation*}
0=(80)^{2}+2 \times \mathrm{a} \times 120 \tag{C1}
\end{equation*}
$$

C1
$\mathrm{a}=(-) 26.7\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ ignore sign A1
(ii) $\mathrm{t}=(0-80) /-26.7$
C1
$\mathrm{t}=3.0(\mathrm{~s})$ A1
(b) (time lost by) car $\mathrm{A}=(3+9+4)=16 \quad$ B1 car B was 17 behind $\quad \mathrm{C} 1$ Car B takes 2 s to travel the $160 \mathrm{~m} /$ Car B 19 behind B1 Hence car A 3 s ahead $\quad(19-16)$ A1
3. (i) scalar named B1
has (only) magnitude / size / value (not quantity) B1
(ii) vector named B1
has magnitude and direction B1
allow one out of two for a vector has direction and a scalar does not
4. (a) (i) $\mathrm{v}^{2}=0+2 \times 9.8(1) \times 30$

C1
$\mathrm{v}=24$. (3) ($\mathrm{m} \mathrm{s}^{-1}$) A1 (-1 if $g=10$ is used, once only on the paper) (zero scored if $\mathrm{s}=36 \mathrm{~m}$ is used)
(ii) $\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \quad$ or $\mathrm{v}=\mathrm{u}+$ at \quad or $\mathrm{s}=(\mathrm{u}+\mathrm{v}) \mathrm{t} / 2$ $30=0+1 / 2 \times 9.8(1) \times \mathrm{t}^{2} \quad \mathrm{t}=24.3 / 9.8 \quad \mathrm{t}=2 \times 30 / 24.3$ $\mathrm{t}=2.5(\mathrm{~s})$
(b) In the air: weight / force due to gravity
(allow air resistance if included as well)
B1
(Hence) constant acceleration / acceleration at $9.8 \mathrm{~m} \mathrm{~s}^{-2}$
(allow reduced acceleration / terminal velocity if air resistance included)
B1
In water: weight and (large) fluid resistance / upthrust / buoyancy B1
Hence deceleration / slows down B1
5. (i) velocity B1
travels in two opposite directions or equivalent words / increasing and decreasing displacement

B1
(ii) \mathbf{Z} any peak or trough $/ \mathrm{A} / \mathrm{B} / 0 / 3.0 / 6.0 \mathrm{~s} \quad \mathrm{~B} 1$
\mathbf{M} any point where gradient is a maximum $(1.0-1.6$ or $4.4-5.0 \mathrm{~s})$
B1

If M and Z are given on the diagram then max 1

(iii) tangent to curve drawn B1
values given correct from graph
answers correct for maximum in range of 1.3 to 1.5
6. (i) $\quad N$ is normal to the ramp (judged by eye)

Allow marks even if the labels N and F are omitted
F is parallel and up the ramp
(ii) $F=W \sin \theta$
7.

scalar	vector
density	acceleration
energy	displacement
power	weight
speed	
time	

All correct scores 4
6, 7 correct scores 3
4, 5 correct scores 2
2, 3 correct scores 1
8.(a) (i) 1. mass $=360 / 9.836 .7(\mathrm{~kg})$
(allow 2sf)
(ii) 2. density $=$ mass / volume

$$
\begin{aligned}
& =36.7 / 4.7 \times 10^{-3} \\
& =7.8 \times 10^{-3}
\end{aligned}
$$

unit $\mathrm{kg} \mathrm{m}^{-3}$
(ii) right angled triangle with an additional correct angle marked
set of correct force labels and correct arrows
algebra shown or scale given
tension $=270(\mathrm{~N})$ or value in the range 255 to $285(\mathrm{~N})$
(b) (i) tension is a vector / has magnitude and direction
direction involved in addition / the tensions or ropes act in different directions
(ii) $\operatorname{sum}=270 \sin 37+360 \sin 53$

$$
=162.5+287.5
$$

$($ or one mark each for values of 162.5 and 287.5 seen $)=450(\mathrm{~N}) \quad$ A0
9.

(a)	(i)	1 Horizontal component $=24 \cos 30$	C1
		$=21 \quad(20.8)(\mathrm{N})$	A1
		$\text { 2. } \begin{align*} \text { vertical component } & =24 \sin 30 \\ & =12 \tag{12.0} \end{align*}$	A1
	(ii)	vertical force $=65+12$	M1
		$=77$	A0
	(iii)	$\begin{aligned} & \text { horizontal force }=20.8(\text { note ecf for } 20.8 \text { component }) \\ & \begin{aligned} \text { resultant }=\left[(77)^{2}\right. & \left.+(20.8)^{2}\right]^{1 / 2} \\ & =80(79.8)(\mathrm{N}) \end{aligned} \end{aligned}$ (or by vector triangle need correct labels and arrows for C1 mark)	C1 A1
	(iv)	$80(79.8)(\mathrm{N}) /$ equal to (iii) allow ecf the resultant force needs to be zero or forces need to balance above value to give no acceleration or constant velocity	B1 B1
(b)	(i)	$\mathrm{P}=\mathrm{F} / \mathrm{A}$	C1
		$=77 / 4.2 \times 10^{-3}$	
		$=18000(18333)(\mathrm{Pa})$	A1
	(ii)	more / increases downward / vertical component (of P) will be greater (for larger angles)	B1

